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ABSTRACT
The main result of this paper is the following theorem: Let p,q € R,
H = H(p,q) € C2(R?“,R) and let H (1) be the boundary of a compact
neighborhood of 0 with YH # 0 on H '(1). If further p . Hy > 0 on
H—1(1) when p # 0, then the Hamiltonian system of ordinary differential
equations
p= “Hylp.q), g = Hp(p,q)

possesses a periodic solution on H'(1). The proof involves minimax

arguments from the calcuvlus of variations.
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SIGNIFICANCE AND EXPLANATION

Hamiltonian systems of ordinary differential equations model the motion
of a discrete mechanical system when no frictional forces are present. A
basic property of such systems is that "eneray" is conserved. Therefore

solutions of Hamiltonian systems lie on surfaces of fixed energy. The main

result of this paper is a fairly general criterion for such a surface to
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possess a periodic solution.
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PERIODIC SOLUTIONS OF PRESCRIBED ENERGY FOR A CLASS OF HAMILTONIAN SYSTEMS

Vieri Benci' and Paul H. Rabinowitz"

Introduction
Let p,q€ ®R' and H = H(p,q) : R" + R be smooth. The problem to be studied here
is the existence of periodic solutions of the associated Hamiltonian system of ordinary

differential eguations

. ] . JH
(HS) p=- -T';— (p,q)y q= I (p,q)
where =+ = rri Setting z = (p,q), (HS) can also be written more succinctly as
z = JH,(z)
where J = ( ? 61) and ] is the n dimensional identity matrix. As is well known

any solucion z(t) of (HS) satisfies H(z(t)) = constant, i.e. the "energy” H 1is an

integral of the motion. Normalizing this constant to be 1, set D = H'1(1). For

E,neR), £ en will denote their inner product. Our main result is

Theorem 1: Suppose H satisfies

(Ry) H e c2(®R,m),

(Hy) D is the boundary of a compact neighborhood of ¢ and H, # 0 on P (i.e. T is
a manifold).

(Hy) p * Hy # 0 if p# 0.

Then (HS) possesses a periodic solution on D.

.Istituto Matematica Applicata, Facolta di Ingegneria, Universita di Pisa, 56100 Pisa,
Italy.

"Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706.

This research was sponsored in part by the National Science Foundation under Grant No.
MCS~8110556 and the United States Army under Contract No. DAAG29-80-C-0041. Reproduction
in whole or in part is permitted for any purpose of the U. S. Government.
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Theoten Y has several predecesscors.  Seifert [1) considered Hamiltonians of the form

u
Hip,q) = ) aj3talpipy + V@) o
i,3=1
15 4 som of kinetic and potential energy terms where B = {q € RV|v(q) < 1} is

s csemorphie to the closed unit ball in R? and 3B is a manifold, the matrix

to, bl s nnuformly positive definite in B, and H 1is smooth. Using geodesic
canmenta rpom geometry, Seifert proved there exists a periodic solution of (HS) of a
soecial type on D Ceneralizing his arguments, Weinstein [2] permitted a more general

ot 1 onergy ters K(p,q) where for fixed g, K is even and convex in p while Gluck

~r 2! relaxed the condition on B merely requiring B to be compact with its

rd4ry a manifold. See also Hayashi (4] and Benci [5] for results related to [3].

¢ iy oorher aovproach was made to (HS) in Rabinowitz [6) for H = K + V where V satisfied
Liefert's cordition and p o Kp >0 for p # 0. A case not covered by Theorem 1 but
~h1or can be sbtained by similar but simpler arguments was given in (7] in which D is

e boundary of @ compact star-shaped neighborhood of 0.

roa different direction from Theorem 1, there has been some recent work on the
lviplizity of solutions of (HS) on D, generally when [ bounds a convex region in
RN see a.g. Freland-Lasry (8]}, Ambrosetti-Mancini 9], van Groesen [10], Berestycki-
Lastv-Marcini-Ruf 1111, and Fkeland [12].

W will prove Theorem 1 by a direct variational approach using minimax arguments.

T e relies in part on ideas from [5-6]. Let z(t) = (p(t),a(t)) be 2n periodic
1
2w .
Alz) = [  p e qdt .
0
-1

4 U] will pe obtained as a4 critical point of A restricted to M = ¥

v
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1 LU
Y(z) 3 F{, H(z)at ,

H(z) = H(z) on D and is suitably modified on XM D. This critical point is produced
as a minimax of AIM over an appropriate class of subsets of M. 1In this approach, the
unknown period appears as a Lagrange multiplier.

The modified Hamiltonian ; will be defined in §1 where some simple corollaries of
Theorem 1 will also be obtained. 1In §2 the functional analytical framework in which the
problem is treated is jintroduced. The properties of M and AIM such as the Palais-
Smale condition are dealt with in §3. Theorem 1 is proved in §4. A dual variational
argument is used in §5 to give an alternate approach to Theorem 1. In §6 a priori bounds
from above and below are obtained for the unknown period of any solution of (HS) in terms
of A(z). Lastly in §7, the results of §4 and 6 are used to prove a stronger version of
Theorem 1 with (H4) replaced by
(1) nechm,m .

An intriguing open question concerning (HS) is whether Theorem 1 remains true or is

false if hypothesis (H3) is omitted.

-3-
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§1. The Modified Hamiltonian

For technical reasons that will hecome clear later, the Hamiltonian will he redefined
outside of a neighborhcod of D. Suppose H satisfies (Hy)-(H3). Then H(0) < 1 and
H > 1 outside of the neighborhood of 0 bounded by 0. Without loss of aenerality we can
assume H({0) < % . Our initial modification of H will allow us to assume H ? 0, is a
multiple of 1212 near 0, satisfies (Hy)-(H3), and H,, is uniformly hounded.

2 3
Indeed since H{(0) < 1 , P >0 can be chosen so that D‘z' > 5 if H(z) > 1 and

2
o Mzl ¢

1}
-

Z' if H(z) € 1. Let x € CT(R,R) such that x(s) =0 if s < -;—; x(s)
. 1 ) 11 .

if s 2 5 and x'(s) >0 if s e (Z ’ 3). Define

12 12 - 1)) .

Fz) = x(H(z) - 1)(plz]? - H(z)] + H(z) + x(1 - H(z))[p 'z

Then H e c2(®"M,R), H = p.1|z|2 near z =0, and H =H near 0. Moreover if

H(z)

1, then z e 0. To see this, suppose H(z) > 1. Then

R(z) = x(H(z) - Diplz|? = n(z)] + H(z) .

+
3 ~
3 ), H(z) 2 H(z) > 1. Similar

If H(z) >§, H(z) = plz|? >%> 1 while if H(z) e (1,

~an

reasoning shows H(z) <1 if H(z) < 1. Thus H 1(1) = 0. A related argument shows
H(z) > 0 if z # 0. It is clear that H satisfies (§4)-(H3). To verify (H3)}, by the
definition of X, it suffices to show that for p # 0,

~ . 2 . -1, 2
(.1 p e A (2) = {x'(8(2) - Niplzl® - rz)) = x* (1 - BN T |21 - Hz)Yp ¢ Ro(2)

+ (Y = x(H(z) - 1) = x{1 - H(z)))p * Hp(z)

1

+ 2|p|2[x(H(z) - 1p + x(1 - H(z))p ') >0

if z e H-1[%-, gl- Again this follows from our choice of p and (Hj).

Since DU 1is compact, there is a B8 > 0 such that |z| B for z € D. Let

X € CQ(R,R) such that Xx(s) = 1 for s € 28, x(s) =0 for s » 48, and x'(s) < 0
for s & (28,4B8). Set

H(z) = x(]zDF(z) + (1 -~ xt|z|Mplz]? .

Then it is easy to check that for p chosen so that szfz > H(z] for lzl e (28,48), H

- . L - PR . -t . “w .
D . R S R
T T S .




'

.

.

T

. ‘u IT’Y.Y‘TI:' v .

2 ol - ar
- -

possesses the properties verified above for ﬁ, ; is a multiple of Iz!2 for large
Izl, and satisfies
(H;) H,,(z) 4is uniformly bounded.
Remark 1.2: The above arguments work equally well if H merely satisfies (H ) and (Hj)
in a neighborhood of D.

Next hypothesis (H3) will be used to decompose H into a sum of kinetic and
potential energy terms. Set U(q) = E(O,q) and K(p,q) = K(z) = a(z) - U(g). Note
that K(z) > 0 via (H3) and K,U € c? via (Hy). Moreover

Proposition 1.3: K satisfies the following properties:

(Kq) X(0,q) =0
(Ky) p - Kp(z) > 0 if p ¥ 0
(K3) Ik ()] € ag(1 + |z])
(Xg) k(z) < aq(1 + |z])lp|
(Ks) [Kkglz)] < aplpl

(Kg) K,,(z) is uniformly hounded in R°"

(In (Ky)-(Kg) and later, a; denotes a constant.)
Proof: (K4) and (K,) follow from the definition of K and (H3), and (Kq), (Kg) from
(Hg). Since

1 1
d
(1.4) K(p,q) = [ 35 K(sp,q)ds = [ p- K,(sp,q)ds ,
0 0

(K3) and (1.4) imply (K4). Similarly

1
(1.5) Kq(p.q) = Hglp,q) = Hy(0,q) = £ Hpqlsp,alp ds

so (Hy) and (1.5) give (Kg).
To define H, one final modification of H i8 reguired. let

a,={qe Rlulq) < s} .

b=




vrwvwewy'r
:

By (H,), Uq #0 on 3R, and there exist constants 4,8 > 0 such that Uq(q) # 0 and

(1.6) |uq(~)| > BU(q) if q e Ry, \R og .
let ¢ € C2 be defined for s < 1t + 2d such that

(¢1) $(s) = s, s <1+4d
(¢2) $'(s) > 1, s <1+ 24
(0,) o(s) = (s - (1 + 2d))"2, s near 1+ 24 .

te further extend ¢ to all of R via ¢(s) == if s 2 1 + 2d.
v(g) = ¢$(U(q)) for g € R* and

H(z) = K(2) + V(q) .

Thus H is c2 where finite and if H(z) = 1, Ula) € Vigq) € 1 by (¢2). Thus

V(a) = U(g) by (¢,) and H(z) = H(z). Consequently a~len = p.

We will find a periodic solution of

{(1.7) p = ~Hg. q-= Hp

on #-'(1). Hence it will be a periodic solution of (HS) on D.

To conclude this section, some estimates will be obtained for

such that

and '(s) > 0 if

Observing that the
V(g) > 1 - 4, it

Proposition 1.8:

(1.9)

and

1.10)

y(s)

0, s < V- 24

=1, s>1 -4

s €@ (1 ~-24,1 - d). Set

viq) = y(vig))

¥ term vanishes if g

U (q)
U (q)
q q

eq. ., and ¢'(V(q))

24

follows that v e ¢ (R",R).

There is a constant Y >

Vq(q) * vigq) >0

vq(q) * vig) 2 YV(q)

0 such that

for all q e Q1+2d

for all g € Q \91_

1+24 2d

-6~

Finally define

V. Let ¥ € C (R,R)

vanishes if
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Proof: Inequality (1.9) is immediate from the definition of V and (02). To check

(1.10), note that if U(g) e (1 - 4,1 + 2d), then V(q) » U(q) by (4.) and $(V(q)) = 1.
2

Therefore
(1.11) Vg(q) ¢ viq) = ¢'(U(q))|Uq| > B(1 = Q)" (U(q))
by (1.6). Thus to get (1,10), it suffices to show

(1.12) $'(s) ? 810(5), s € (1 -4d,1+24)

and this is immediate from (¢1)-(03)-

-7-
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§2. Functional Analytical Preliminaries

The space in which (1.7) will be treated is the Hilbert space

£z {z=(p,a)lperis’,®Y, qew 2, M}

L2(s!, R & wlr2(s?, g
where LZ(S',Rn) denotes the set of n-tuples of 21 periodic functions which are square

integrable, etc. For w e L2(s',RY), 1let

1 2n
{w] = T £ wit)dt .

(p,q) € E can be decomposed into ({p),[q]) + (p,q) where

Thus any z

S 2 ~q,2

(p,q) e L & W and

12 = {p e t2s', R | (pl = 0} ,

~1,2

W {qew (s, |(a] = 0} .

As inner product in FE we take

. . . .
(zy,2)_ * é [(py(t) * p,(t)) + (Dq, * Da,)ldt + (py]lpy) + [ay]lay,]

d - - . .
T3 and zy = (py,qq) = ([py] + p1,[q1] + q1). etc. The norm in E will be

i

where D
denoted by #+} and we will generally use the same notation for the norm in E', the
dual space of E.

It is easy to see that D|A : w1'2 > L2 is an isomorphism. Let D'1
b 1,2

denote its
inverse. We define linear maps PO, P*,P" of E into E by

P%p,q) = (Ip),Iq))

and

Pi(p,q) (% (p + D), % (q £ D-1p)) .

It is easy to verify that these maps are well defined and are (continuous) projectors on

-8=
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E satisfying pC + p* + P~ = id, the identity map on E. Define % = PO%¢ and

b S b4 S 1

e} = p*E. wote that if (pY,g%) e EY, then pf = = (p¥ £ Da¥). Therefore

~|

(2.1) p- = tDQ” .

Next ohserve that the spaces En, Et are mutually orthogonal subspaces of E.

if zt = (pt,qt) e Et,

2n
(2,235 = [ (p" + p) + (pg" + pailat
0
2n
+ - + -
=[ ((pg + (-Dg )) + (Dg =+ Dg }lat =0
0

via (2.1).

For z = (p,q) € E, define the action integral as

A(z) =

]
~—
0

.
Qe
Q
(ad

Then A€ C (E,R) and writing z = 29 + z* + 2= and using (2.1) shows

2n
(2.2) a(z) = [ (p% + p* +p7) + (Dg* + DgTrat
0
r + + + - - + -
=/ [(p *Dg)+(p *Dg)+(p *Dg) + (p * Dg )ldt
0
1 2w
=73 [ (p*l2 + Ipg*12 - 1p712 - Ipg™!2)at
0
1 +. 2 -2
= — 1< - .
2 (lz Iz 67)

Next define
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and

M= {zeEl¥z) =1} .
Qur goal is to obhtain a periodic solution of (HS) (or eguivalently (1.7)) as a critical
point of A|M. As will be seen later, a critical point 2z of this constrained

variational problem satisfies z € cts', " ana

(2.3) z = AJH,(z)

where A € R\{0}. Since (2.3) is a Hamiltonian system, H(z(t)) = constant. Thus z e M

implies z @ D. Moreover since A # 0, rescaling time in (2.3) yields a periodic

A Zha gt e o

solution of (1.7) on D, i.e. the desired solution of (HS).

L
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§3. Some Properties of M and Al
m

This section studies several properties of ¥ and M. It will be shown that M is
a ¢ manifold which bounds a neighborhood of 0 in E and AIM satisfies a version
of the Palais~Smale condition.

For q € wle2(s!, R, set
1 2n
stﬁﬁ vig(t))dt .

Remark 3.1: The definition of V shows that if V(gq) < =@, q(t) e Q1+2d for almost all

t € [0,2n] and since q e c(s',”RM), q(¢t) el for all t € [0,2x). In particular
1424

there is a constant M > 0 (and independent of q) such that Iqgl _ < M.
L

For x € R*, let
f(x) = inf [x = y|
yedd, o

Proposition 3.2: There exist constants 81,M1 such that for all x € 51+2d’

(3.3) B,l(x)'2 < V(x) + My .
Proof: Let x € 91+2d. Using the implicit function theorem, it is not difficult to show
that there is an eo > 0 such that if £(x) < eo, there exists a unique x € an1+26 and

p > 0. such that
- x - oU_(X) .
x = X q
Therefore there is a 82 > 0 such that
(3.4) B,p > Ix = x| > Bp 1f &(x) <€,

via the continuity of Ugq and (1.6). Now

(3.5) Ux) = U(x) = Ugtx)(x = %) + of|x = x|)

as x * 3 Therefore by (3.4) - (3.5), for x near 301*2d, e.g. 2(x) < ¢,

142a°
(3.6) lutx) - utx| « pluq(i)!2 + olq) € Mp .

Now for f£(x) € €, by (03) and (3.6),

Vix) = (U(x) - (1 +2a))"2 > (sz)'z .

.19~
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But p = 1(x)|Uq(§)l-1. Therefore

(3.7) vix) » n3z(x)'2
if R(x) S €. If &(x) > E, LUx)2 < e so
-2 -2
v(x) + M3€ > Mal(x) .

Thus (3.3) obtains with M, = M35-2 and B, = M,.

The estimate (3.3) will be used next to show that l(q) < ® implies that q(t)

avoids 391+2d.

Proposition 3.8: Let q € W'r2(s!,R") satisfy V(q) < ®. Then there is an

M = M(liql ;
W

,V(@)) > 0 such that ZL(q(t)) > M for all t e (0,2n].
’
Proof: Since q is 2n periodic, by translating t it can be assumed that
f(g(0)) = min  f2(q(t)) = u .
te(o0,2n)

By the Cauchy-Schwarz inequality,

¢ 1/2
(3.9) latty = qtor] < [ famyfar < € "Caqr .

(] w'
Since & is Lipschitz continuous (with constant 1},
(3.10) lt(a(e)) - taton| < lace) - ator] < £21qr .

wl
Therefore
(3.11) glate)) <u+ e
wl
We can assume Igl 1.2 0 for otherwise the result is trivial. By (3.3) and (3.11),
wl

-12-
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(3.12) > (@) P é

from which the result follows.
Remark 3.13: Proposition 3.8 implies that

{gew2(s!, R iq(t) e Q for all ¢t

1+24

The smoothness of U will be established next.

Proposition 3.14: V e c?

Proof: Let q € wr2(s1,R") with V(q) < =. Tet & = inf

Proposition 3.8. Let q e w''2(s1,R") with 1q1 < p. If p is sufficiently small,

1gl _ < §/2. Therefore since V e c*a
L

(3.15)

as E + 0 uniformly for t € [0,2n]. The

embedding of w'¢2(s',R) in c(s',®') then readily imply that U is Frechet

differentiable at q with

~ 1
V'iq)q = >

V'(a) 1is continuous, (V'(qg))' = V"(g) exists,

~ o~ 1
Vi) (q,9) = 5 [
0

2

and UV"(q) is continuous.

on the domain of V.,

1+2

Vig + @) = V(q) + vq(q)& +

eatalat At A e s weat

TTRTFTATY A o AL A AT A I Adh al il ‘T

(8,2(a(e)) "% - my)ae

1/2 -2
(W + t iql 1,2) at - M,

W

2 -
(u2 + tigl ) 1dt - My
W

2
gle2
) - "

the domain of V is

e (0,2n]}).

2£(q(t)). Then &§ > 0 by
te(0,2n)

w1,2

dln)l

Al
2
definition of V, (3.15), and the compact

~ o~ ~2
V(3,3 + )
L CH otlql

2% -
| v'(q)q dat ,
0

2n o~
v"(g)(g,a)dt

-13-
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For z € E, set

2"
1
5;'1 K(z)dat .
0

K(z)

Proposition 3.16: K e C1'1(E,R), (i.e. K is Frechet differentiable and its Frechet

derivative is Lipschitz continuous).

Proof: since X e c2(m2",R), given any z,; € B0, by Taylor's Theorem,

(3.17) K(z + T) = K(2) + K (2)¢ %Kzz(z + 85)(5,¢)

for some 6 € (0,1). By (Xg) of Proposition 1.3, K,, is uniformly bounded. Therefore
there is a constant My > 0 such that

(3.18) Ik(z + £) - X(2) = K_(2)5] < M3|l;|2

for all z,; € R®". cChoosing z,{ € E, (3.18) implies

1 My 2 2
[ (3.19) |Ktz + ) - Kz) - g{) K, (2)¢ at| < P TI lcle <M A”

In particular for z fixed, given any € > 0, if ¢§ is sufficiently small, the right

hand side of (3.19) does not exceed ¢€lifl. Hence K is Frechet differentiable and

ety

LT R

.
K'(z)g = F{) K, (z)gat .

To show that K' is Lipschitz continuous, note that

2n
(3.20) Kz +w) =K'(2) .= s I3[ (Ry(z+w - K (2))8t .
E CeE, gkt [
As in (3.17) by the Mean Value Theorem and (Kg),

q (3.21) Rtz + w) - x,(2)| < Mglw]|
-

b for some constant Mg. Therefore (3.20)-(3.21) imply

!

p

-
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(3.22) IK'(z + w) -~ K'(2)1 , € Mglwh ,
i.e. K' 18 Lipschitz continuous. :

By the definitions of K and V, ¥ = K + /. Recall that M = V-1(1). The next
three propositions study some properties of M.

Proposition 3.23: M 4is c'/! manifold in E.

Proof: The smoothness assertions follow on combining Proposition 3.14 and 3.16 once we
show that M is a manifold, i.e. ¥'(z) ¥ 0 for all z @M. But if z = (p,q) with
pZo,

2o
- { P * Ky(z)at > 0

l.-

¥'(z)(p,0) =

N

via (Kj) of Proposition 1.3. If p = 0, then ¥(z) =V(q) =1 wvia (K;) and by

Proposition 3.8, q(t) € @ for all t e [(0,2r)., If q(t) e 91-d for all

1424
t e [0,28], U(q) € 1 = d which is impossible. Thus since g e c(s',»"),

q(t) e g \91-d on a set Y of positive measure. By previous remarks,

1424
viq) e c(s',®) and (0,v(q)) € E. Hence by (1.9)=(1.10),

(3.24) ¥ (2)(0,v(g)) = "(q)v(q) > 3= [ ¥(1 - a)xae >0 .
b 4

Thus M 4is a manifold and the proof is complete.

Proposition 3.25: M is the boundary of a neighborhood of 0 in E.

Proof: Y 1is continuous on 1r2(s',®') @ {q e w''2(s!,®)|V(q) < ®} which is an open set
in E. Therefore 7-1(-',1) is open. Since H(0) = 0, 0 belongs to this set.

Proposition 3.26: M is bounded in 12(s',R2%).

Proof: Llet (p,q) € M. Since U(q) < », by Remark 3.1, there is an M > 0 such that

Igl _ €< M. The definition of X implies it is a multiple of |p|2 for |z| near =.

L
Hence there are constants Mq,Mg > 0 such that

K(z) > My|p|2 - Mg

for all z e 12“. Therefore

=15«
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K(z) ? 5=
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L2 2n

The next proposition shows that AIM satisfies a version of the Palais~-Smale
condition.

Proposition 3.27: A|M satisfies (Ps)+, i.e. if ¢ > 0 and (zj) is a sequence in

E such that
(1) zj EMp

(ii) A(Zj) + c,

and (111) A'(zg) =~ A ¥'(z) ¥ 0 (in E")

as Jj * ® where

-2
A = ' ,Y' e l
3 (a (zj) (zj)) oY (zj)

then (zj) has a convergent subsequence.
Proof: By (ii), there is an € € (0, %) such that
(3.28) c-¢€ < A(zj) Cc+e

for all large 3j € N. Similarly by (iii), there is a w; € E' with w, + 0 as j + =
3 b

and
(] - 1 =
(3.29) A (zj)c xjw (zj); <wj,c>
where <¢,*> denotes the duality between E* and E. Choosing [ = (pj,O) yields
A 2n
- _'i =
(3.30) Alzg) - 37 é Kp(z4)pydt = <wy,(py,0)> .

£ while the left hand side of (3.30) goes to O

By (3.28) and the choice of ¢, A(zj) > 3

-16-
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ag J * ® since ((pj,O)) is bounded in E. Consequently by (X,)}-(K4)} of Proposition
1.3, Xj is positive and bounded away from 0 for large j. We restrict ourselves to
such j @ W.

Choosing ¢ = (§,n), (3.29) can be rewritten as

2 il 2n - -
.3 « h) + (E ¢ q.)ldt - (H ) . + (H * n)ldt = <w_ > .
3.3 [ Up, KN 5 £ [ (z) « &)+ (H_(2,) « n)) vyt

Setting wy = (uj,vj) e E., i.e, uy L2(S1,!P) and vy e wl2(s',®) and noting that
Qj e w1 2(s), K", (3.31) implies that

A, .
(3.32) (1) “Py = ;% Hq(zj) + vy

A A
. -"J'- -—1
(i1) a4 on Hp(zj) + uy P Kp(zj) + uy
holds in the senge of distributions.
We claim that

2n
(3.33) / Ko(zy) * pyat > a > 0

0
for all j € N. Assuming (3.33) for now, (3.30) and (3.28) then imply Aj is bounded
away from . Then by (3.32) (ii),

A

; 3
(3.34) lqlez < = le(zj)le + 'uj'LZ

so (K3) of Proposition 1.3, the boundedness of (zj) in 12 (via Proposition 3.26) and
Remark 3.1 show that (q4y) is bounded in w''2(s1,®"). pProposition 3.8 then implies
there is an ; > 0 independent of 3 such that Z(qj(t)) > ; for all t € [0,27), i.e.
the functions ay lie uniformly inside Q1+2d' Therefore the functions (Vq(qj)) are

bounded in L and by (Kg) of Proposition 1.3, Hq(zj) are bounded tn LZ. Consequently

-17-
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the right hand side of (3.32)(i) converges strongly in w'1’2(s1,R") (along a

subsequence). Therefore éj converges strongly in w'1'2(51,kn)- Consequently D"éj
converges strongly in L2(S1,RP). But py = [pj] + D"éj. Hence along a subsequence
pj converges strongly in L2(S1,HF). Lastly by (3.32) (ii), the same is true for a
subsequence of qy in w"z(s‘,nP) since (K3) of Proposition 1.3 implies that KP is a
continuous map of r2(s',R") to 12(s',®").

Thus Proposition 3.27 will be established once we show that (3.33) holds. Suppose

that (3.33) is false, i.e.

2n
(3.35) K_(z,) + p,dt » 0
£ p'%3’ * Py

for some subsequence of j's. This implies that + 0 along this subsequence.

Ip.#
3,2
Indeed let Yq4 = {t € [0,2!]||pj(t)| <o}, ¥y = {te (0,2n}]o < |pj(t)| < 48}, and

Yy = {t e [0,21]||pj(t)| > 48} where o < 1 and B8 was defined together with H in ]

§1. On Yqi, ps ° (z;) = 25|p |2. Oon Y,;, both |p|2 and p * are bounded away
330 Py ° Kplzy 3 23 %

from 0. Therefore there is a constant o = a{o) such that |p|2 < a(o)p ° K, on .
Yzj' Combining these observations yields
2%

2 2
(3.36) { 'pj| at < 2m0° + ato) | Py * Kplzglat

Yoy

+ 2007 Py * Kplzylat .
Y3j

Since o 1is arbitrary, (3.35)-(3.36) show lpjl P 0 as j * ®. Then (Kj3)-(K4) of

L
Proposition 1.3 imply
(3.37) K(zj) +0
as j * = while (K3) and Proposition 3.26 show
2n
(3.38 K . dat + 0
) [ Ixpezplleyl

-18~-
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A

as J * =, Bpaleo by (Kg),

2n
3.39) . <
( I(f) K, (24) v(qj)dtl IKq(zj)lelv(qj)le + 0

as J * ® gince (Iv(qj)l 2) is uniformly bounded. By (3.37) and (i) of Proposition
L

b 3.27,
o5
o (3.40) Vigy) + 1
-
tﬁﬂ as j +* ®. set
L {t e [O,Zwllv(qj(t)) >1 -4} .
::‘ Therefore
b 1
- (3.41) Vigy) < 37 ¢J vigyenae + f V(gy(t))de)
E A 0,271\ 4,
[.
f. < %;‘I Vigy(t)at + 1 -4 .
P .- 4
. 3
Hence for large 3, by (3.40)=-(3.41),
a._ 1
(3.42) F<5/ Vigy(t))at .
A
3
Next by (3.32) (i) and (1.9),
2% a :l 2
. S = at = H . dt + < >
(3.43) {) Py * Fr Vigyle)) h{) g(2g) ° Viayde + <vviqy)
A [
? == [ V (q.) ¢ vig)at = IK {z )V _Iv(q )V ] ~ v I _ Iv(g )l .
TR 3 LRSI R T 32 2

As has been noted earlier, v(¢) € c'(®',R) and Iql w M for all (p,q) €M. Hence
L

- there exists a constant My > 0 and independent of 3 such that

. vig )1 < M (1 + 1q.1 .

: 9y W12 1 9y L2’

L

; Thus (3.42)-(3.43), (1.10), and (Kg) of Proposition 1.3 imply that
-19=-
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. . , > Ay = - of1) - .

(3.44) i Py * gt Vlayat §¥ 770 -othig
0 L
as j * @, On the other hand, by (3.32) and (3.38),
2n a 2n .

“ e < * . 1 2 2

(3.45) £ Py * gF viay)et € vi(ay) - £ Ipy|laylae

n 2n
< . | p. | |pslat
My Ay £ Ik, (250 [ lpylae + £ luyl 1py!

< Aol + o(1)?2

as j * ®, Combining (3.44)-(3.45) shows

yd .

(3.46) 2 Aj < o(1)lqle2 + o(1)

as j * ®@. But then by (3.32) (ii),

(3.47) Y35 < oA MK (z )1 , + o(1)
4 3 P2

so (KJ) of Proposition 1.3 and Proposition 3.26 imply Aj +0 as j =»
contradiction. Thus (3.33) has been verified and Proposition 3.27 has
Two further technical results are needed in this section. Llet L

map between w-'s2(sV,R") anda w' 2(s!,R"), i.e. L is defined by

(Lw,8) = <w,§>
w1,2

for wew ' 2(s",R") and £ e w'2(s?,R"). abusing notation somewha
let L denote the duality between E and E'. For z = (p,q) € E,
and Ppz 2 q.

Proposition 3.48: P, L¥' is a compact map of M into wle2(sl, R,

-20-
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Proof: For z € M and § = (u,v) € F,

2n
1 - -
¥'(z)g = <¥'(2),4> = on ! [(Hp(z) e u) + (Hq(z) ¢ v)ldt = (C‘i"(z),c)E .
Therefore
1 2n _
1 B m— .
(3.49) (PyLY (z),v)wh2 5 {) H (2) * var .

The right hand side of (3.49) is a continuous linear functional on w1'2(s’,nﬂ).

Therefore there exists a unique © = 0(z) € w"z(s’,n“) such that

1 2 _
(3.50) Otz),v) = =/ Hy(2) * vat .
w 0
Clearly ©(z) = P, L¥'(2z). But the map z * ;q(z), M+ 12(s',R") is continuous and the
map ;q(z) + O(2z2), LZ(S1,Rn) > w"z(s1,n“) is compact and linear. It follows that
P, L¥' is compact.
The final result in this section is a version of the so-called "Deformation Theorem"
which is appropriate for our setting. A subset S CE will be called invariant if
2(t) @ S implies that =z(t + 8) € S for all t e [0,2n]. A mapping h : S + E, where
S is invariant, will be called equivariant if h(Tez) = Teh(z) for all 6 e [0,2n)

where Tgg(t) = g(t + 8). For s € R, let

As z {z e Mla(z) » s} .

For ¢ € R, let

— -2
o K. = {z @ Mla(z) = ¢ and a'(z) = (A'(2),¥'(2)) M¥'(2)1 “¥'(z)}
T E

f.e. K. is the set of critical points of AIM having critical value c.

-21-
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Proposition 3.51: Let C,E > 0. Then there ir an € € (0,€) and n € C([0,1] x M,M)

m such that
3

1°© n(1,+) is equivariant

2° n(1,z) =z if A(z) @ [c - E,c + €]

3° In(1,z) - zb €1
o -
4 1f K, =@, n(1,AC_€) C AL

59 P+n(1,z) = B+(z)z+ + B¥(2z) where 8+ € c(M,{1,el) and PZB+ is compact.

Proof: Most of the above assertions follow from standard arguments and therefore we will
! be somewhat sketchy below. See e.g. [13-15] for more details. The function n is |

determined as the solution of an ordinary differential equation of the form

(a*(n), L"(n})) ,

(3.52) a0 ey LAt () - —

¥'(n))
at 1Y ()

- n{0,z) =z e E .

- The scalar function @ is Lipschitz continuous, 0 € w(z) € 1, w(z) =1 if z e M and
A(z) is near c. Note that the argument of Proposition 3.23 shows ?-1(9) is a manifold
for each s near 1, e.g. [s - 1] < sg. The function w(z) =0 if lvez)y - 1) > Sqg-
Lastly w(Tez) = w(z) for all 9§ e [0,2n]).

Since the right hand side of (3.52) is Lipschitz continuous and is bounded by 1 (see

[14] or [15]), there exists a solution of (3.52) defined for all t € R and =z € E.
Moreover In(t,z) - zl ¢ 1 for t e (0,1], i.e. 3° holds. The form of (3.52) implies
that n(t,M) =M for all t e R. The properties of w show that n(1,*) satisfies 1°-
2°. proposition 3.27 and a standard argument - see [13)-[15] imply 4°. To prove 5°, note

that PTIA'(z) = z*. Therefore integrating (3.52) yields:

-22-
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t
(3.53) P'n(t,z) = (exp | w(n(s,z))dslz’ -
0
t 1
~ [ texp | win(s,z))ds)w(n(T,z))(A'(n(t,2z),¥" (n(1,2))}) -
0 0 E

Zp*L¥r(n(t,2))at .

W n(t,z)0
Thus P'n has the form stated in 5°. The compactneges of p28+ follows via Proposition

3.48 and an argument from [16] since P, and Pt commute.

Remark 3.54: Let A , = {z e MIA(z) € 8}. 1If we replace w(z) by ~w(z) in (3.52), the

asgertions of Proposition 3.51 still hold with 4° replace by n(1,a, )CA_ and 5% py

Pn(1,z) = 8 (z)z" + B (z) where B~ e c(M,[e”1,1]) and P,B” 1is compact.
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Lemma 4.1: Let M7

Proof: By (2.2) for 2z = 2t e E+, A(z)

I DR T B . SRR M R L e AL S B B itk Bl Saeh S 7S A

§4. Existence of a Solution

The proof of Theorem 1 will be completed in this section. The solution will be
obtained as a critical point of A|M by a minimax arqument. Then a simple regularity
argument shows it is a classical solution of (HS). The following two lemmas pave the way
for the definition of the critical value c.

M N EY and set

e
"

inf  A(z) .
zeM+

Then a > 0.

% 1z*42. Ssince by Proposition 3.25 M is the

boundary of a neighborhood of 0 in E, there is an r > 0 such that 1zl < r

1
implies z is interior to M. In particular for z e aBr(O) N Y, a(z) > 3 r2. Hence

r2,

N

a ?
Mext let L* be a two dimensional invariant subspace of E'. We further require
that L* be such that there is a constant ay > 0 satisfying

(4.2) 1zt , Salzl
L L

for all z e E® @ E- @ L*. To find such an L+, let eq,...,e, dJdenote the usuval basis

in R'. Then we can take

g0 = span((ej,O),(O,ek)|1 < j,k € n} ,
et = span{((j + %)sin it g - (1 +4%)cos jt ek),

(k + 1)cos Lt e ,(1 +-;—)sin st e )1 <km<n, and j,2en ,
E" 2 span{((j + 1)sin jt e, (1 + %)cos it ey ),

({2 + 1)cos Rt e . = (1 + %)sin Lt em)|1 < k,m <n and 3jyt C N} ,
and L* = span{(sin t e,,-cos t eq),(cos t eq,sin t e')}.

1t is easy to verify that (4.2) holds.

-24-
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Lemma 4.3: If M~ = M N (E- ® 0 @ L*) and

d = sup_ A(z) ,

zeM

then a < =,

Proof: By Proposition 3.26, M is bounded in L2(S1,R2“). Therefore there is an

Mq > 0 such that Hzi 2 < My for all z e M. 1In particular for z = z~ + 20 + 2zt eM™
L

by (4.2) we have
+
(4.4) iz 2 < aMy .

+

. . : : + +
Since L is finite dimensional, there is a constant ay > 0 such that iz 1 < azlz ]

for all z* e L*. Hence -
(4.5) a(z) = 1 (12702 - 1271%) < 2 (aqamy)?
for ze M and a < % (a1a2M1)2-
Now the class of sets that will be used to find a critical point of AlM can be
introduced. Let
rz={hecMM | 1° h is equivariant,

2% n(z) =z if Alz) ¢ (0,3 + 1],

3% h(z) maps bounded sets to bounded sets

a® P*n(z) = B(2)z" + B(z) where B € C(M,[1,8,]), By =B, (h) > 1,

and P,B(z) is compact}.

A critical value c¢ of A!M

(4.6) c = sup inf+ A(h(z)) .
hel zeM

can be produced by taking:

To see this, note first that id € [, Hence by Lemma 4.1, ¢ » a > 0. To prove that

¢ < », the following intersection theorem which is of independent interest is required.

Theorem 4.7: let h e . Then h(MY) N M~ # .

-25-
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Proof: We will use a finite dimensional approximation argument. Let E; and E'; be
2m dimensional invariant subspaces of Y, E” respectively such that if
En = E;‘ o’ e E;, U E, = E. Such subspaces can be written down explicitly using the

mew
basis for E given following (4.2). Let P, denote the orthogonal projector of E

onto E,. Set h, ZPhe cMt n En/Ey)- Note that by properties 1°-2° o T, h, is

F equivariant and hp(z) = z on EOn M. By Proposition 2.2 of [17] (where we take f to

) be the orthogonal projector of EY onto the orthogonal complement of tt in gt

a composed with h,), there is a point zp eMtn En such that hp(z,) € E* & g0 o LY Ve

B claim (z,) is a bounded sequence. Otherwise Izml + @ along a subsequence. But then

g

since zj € E*, A(zm) = % IzmI2 + », Hence by property 2° of T, hp(zy) = 2z, for large

T

m. Therefore z, eM* n(e- @' ®ert) =M NL*. since M is bounded in L? and LY

is finite dimensional, (zm) must be bounded in E, a contradiction.

o
L' Thus (z,) is a bounded sequence. By property 3°0f T, (hp(zp)) is also I
b
a bounded. Property 4% of T implies that

4 = B(z ) '@ P*h (2 )

(4.8) ap = Blz 2P h(z) - PyB(zp))
:I Where Zn = (pm,qm). The boundedness of (zm) and compactness of P,B show the second
- term on the right hand side of (4.8) has a convergent subsequence. The boundedness of
'\ hp(zy) and the fact that P+P\n(zm) lies in L* which is finite dimensional implies the
.-,.' first term on the right hand side of (4.8) also has a convergent subsequence. It follows
o

then from (4.8) that q, has a convergent subsequence in w1'2(S1,R“)- Therefore the

same is true for p, = Dq, in L2(51,lt"). Consequently z, *z € M* and by the

continuity of h, hyplzp) + h(z) € M~. The Theorem is proved.

Corollary 4.9: ¢ € a < =,
Proof: By Theorem 4.7, hM¥)N M~ # 4 for any h € T. Therefore for each h e,

inf, A(h(z)) < sup_ A(w) = a
zeM weM

via Lemma 4.3.
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Now we can prove
Theorem 4.10: ¢ is a critical value of AIM.

Proof: 1If not, we can invoke Proposition 3.51 with €= % min(1,a) obtaining
1.

n{1,*) e ¢(M,M) and satisfying 1°-5° of Proposition 3.5 But 1°-3°, 5°, and our choice

of € imply that n(1,») € T as is n(1,h) for any h €T, By 4° of Proposition 3.51,

(4.11) N s A AL

Choose h e I so that

(4.12) inf+ A{h(z)) ¢ - € .
zeM
By (4.11),
(4.13) inf, A(n(1,h(z))) » ¢ + € .
z€

But since n(1,h) e T, (4.6) shows
(4.14) inf A(n(1,h(z)) € ¢ ,
zeM
a contradiction. Thus c¢ 4is a critical value of AIM.
Now finally we can complete the

Proof of Theorem 1: Since c¢ 1is a critical value of AIM, there is a A @R and z eM

such that A(z) = ¢ and A'(z) = A¥'(z) = 0, 4i.e.

2w
. A = -
(4.15) g [(p * Q) + (P & -5 (H (2) « P) + (R (2) * 0)at =0
for all (P,Q) € E. Equation (4.15) expresses the fact that z is a weak solution of
(2.3). The argument of (3.28)-(3.30) and our lower bound for ¢ show A > 0. A simple
regqularity argument - see the proof of Theorem 3.3 of {18] ~ shows =z € C'(S‘.l?"),
i.e. z 1is a classical solution of (2.3). Therefore H(z(t)) = constant so ¥(z) = 1

implies that 2z(t) e D. Lastly since ) ¥ 0, making the change of time scale t *+ it

shows z is a 271A periodic solution of {(HS). The proof is complete.
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§5. A pual approach

In this section another existence proof will he given for a critical value of AIM.
This approach is "dual” to the previous one in the spirit of (19). The critical value
obtained in this section may differ from that given by (4.6).
The new critical value will as in §4 be obtained as a minimax. Let
A= (gec(MM|g satisfies properties 1°-3° of T
and 4° P"g = 87(z)z” + B™(z) where B € C(M.[B,,1]):
By = B,{g) > 0, and P,B” is compact}.
As in §4, there is an intersection theorem associated with A.
Theorem 5.1: If g e A, g(M™) NM* # g.
Proof: set g, = P,g € C{M~ ME,,E,) where E, and P, are as in the proof of Theorem
4.7. By properties 1°-2° of A, g, is equivariant and gp(z) = z on E°, Hence
Proposition 2 of [17) can again be invoked - this time with f being the orthogonal
projector of E_ ® E? @ L* onto E_® e® composed with g - to obtain z €M™ N E
such that g,(z,) e B;. By Proposition 3.26, (zy) is a bounded sequence in

2

LZ(S1,R2“). Therefore by (4.2), (z;) is bounded in 1L“ and therefore in E since

+

z €L which is finite dimensional. Since Eo is L2 orthogonal to E- @ £* via the

3+

0y

definition of these spaces, (zm

is bounded in ¥. We claim (z;) is also bounded in

E. If not,

2

Azg) =3 (12712 - 121%) » =

But then by property 2° of A, On(Zp) = zp for large m so zp €M™ N EY = M N L*. This

implies z, = z; for large m, z_ = 0, and (z_

m m) is a bounded sequence.

Since (z,) is a bounded sequence, it possesses a subsequence which converges weakly

r! in E to z € E. By property 4° of A,

» - - -

3 (5.2) PoP gn(zy) =0 = 8 (z )q  + PuPB (2zp)
P.

b and Pmpza-(zm) has a convergent subsequence in w1’2(S1,R“). Hence so does q;.
-

L°.

(]
-
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Therefore p;\ = D;m does also in 1,2(51,R")- since £¥ @ L* 1s finite dimensional, it
follows that zy * z in E and z € M". since g 1is continuous,
Im(zy) * 9lz) @ M N EH =yt

Now define

(5.3) S = inf sup _ Alw) .
gel weg(M )

~ ~ —

Theorem 5.4: c is a critical value of A‘M with a € ¢ < a.

Proof: Since id @ |}, ¢ < a. Moreover by Theorem 5.1, if g e A, giM I N MY ¥ g

Therefore

co>infaza.

Mt
Finally using Remark 3.54, the proof that ° is a critical value of A‘M follows the

same lines as the prcof of Theorem 4.10 and we will omit it.
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§6. An a Priori Bound for the Period

Theorem 1 establishes the existence of a periodic solution of (HS) as a critical
point of AIM. In this section, in a somewhat more general setting, an a priori bound
will be obtained for the period of any periodic solution of (HS) in terms of A(z) and
various constants determined from (Hy)-(H3). Writing (HS) in the form (2.3), the period
is 2%A; hence our a priori bound is for ).

Theorem 6.1: Suppose H satisfies (Hq)-(H3) and z € C1(S1,R2") is a solution of (2.3)
with X # 0. Then there are constants 5>£>0 independent of 2z such that
(6.2) alatz)] < |A| < d|acz)] .

Proof: Without loss of generality we can assume A and A(z) are positive. Writing

(2.3) as
. b = =AH

(6.3) P 4 (2)

(6.4) g = \d_(2) ,
1 p

equation (6.4) implies

2%
(6.5) A(z) =X [ p e H(z)at .
0
Consequently
(6.6) A(z) < 2mA max § ¢ H (g)
(E,n)=ceD P

and this gives the lower bound for A 1in (6.2).

Next from (6.3)

2w 2 2n 2% R .
- = > . = - . + a
A lqu aa=[ p H at | p e (Hgga + Byplat
0 0 0
2n
= - . H -
A g P (HogHy - Ho Ho)at
or
=30~
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2%
2
. =) o - .
(6.7) 0 é Ilqu + (P ¢ (Hy Hy = HogHp))ldte

Adding b times (6.7) to (6.5) gives

2n
. 2 . -
(6.8) Alz) = ) {) (p * Hy + blug|® + (bp = (HoH, - BogHo))lat o

By (H;), there is a Y > 0 such that

|Hq(0,q)| >Y if (0,a) e D.
Therefore there is a 0 > 0 such that
(6.9) ligtpia)| > L 1f (p,@) €D ana |p| < 0.

Making ¢ s8till smaller if necessary, it can be assumed that

2
(6.10) lp + (Bgphy = Bogi) | < Ig 1f (p,) €D ana p| <o .
Writing (6.8) as
alz) -
(6.11) 21y 41,

where 1I4 denotes the integral of the right hand side of (6.8) over
{t e [0,27] p(t)| <o} and I denotes the complementary integral, lower bounds will
2

be obtained for I4,I,. By (6.9)-(6.11), if

% = meas{t e (0,2n]]Ip(t)]| < o} ,

then

2 2

Y Y =p
(6.12) o -Lr-nize.

To estimate I,, let

My Z max lp * (HgpHy = HogHp) |

and
w(o) = 2—:1-1- zev,T:aTn P * Hy(z) .
Then
-31=
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(6.13) I, ?» (2w(o) =~ h)M1(2n -2) .

Choosing b = w(0) and combining (6.11)-(6.13) vields

. A(z) Y2
. (6.14) - > m(c')(—8 L+ M1(21t -4))

2
> 2nw(o)min(l§,M1) = x(0) .

Thus the upper bound for X in (6.2) holds with a = K(c)-1.

Ui B aund

Remark 6.15: The constant a in (6.2) depends only on c' bounds for H on D while
a depends on c? bounds for H. To obtain an existence theorem for (HS) when H is

merely in C1, a better estimate for 3 is needed. Let W(z) € R* such that W is c!

i

in a neighborhood of 0. Then as in (6.7) we get

s

s

2n
b. (6.16) 0 = A g [(w(z) o B+ (p e (Wo(z)Hg = Wo(z)Hp))lat .
S |
3 |
iz: Suppose W satisfies -
-
h 2
" (6.17) Wwz) *H(z) > if z=(0,9) eD.
2 q 2
[~ Prgquing as in (€.8)-(6.15) then yields
. A(z) 2 -
(6.18) ———>w(o)(Y—82+M1(2n - ) = x(o)
where

My = max lp » (W H, - woH )| .
1 lp
26D Pq q

Therefore we get an upper bound for A of the desired type.

The existence of a W as in (6.17) follows from a result of Palais [20]. If F is

|
a real Banach space, ( CE and ¢ e C1(0,R), then w € F is a pseudogradient vector f
|
for ¢ at z e (0 if

32
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(6.19) (1) twt € 200 (2)1)

2
(ii) <°'(z),w>£.£ > ez,

1f dec(E,R, T =1{zeElo(z) # 0}, wiz) is locally Lipschitz continuous, and W(z)

is a pseudogradient vector for all z e E. W(z) 1is called a pseudogradient vector field
on E. Palais has proved (20]}.

lemma 6.20: If ¢ e C’(E,R), there exists a pseudogradient vector field for W on g.

2n

Choosing £ = R and using (Hy)-(H,), it is easy to verify there exists such a W

in our setting. Moreover by using a smooth partition of unity in the proof of Lemma 6.20
~ see e.g. Lemma 1.6 of [15] - it can be assumed that W is smooth. Thus the estimate

(6.2) holds even when K € C1.
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§7. A More Refined Existence Theorem

The goal of this section is to prove
Theorem 7.1: Suppose H satisfies
(H}) H e c'(R?",R)
and (Hy)-(Hy). Then (HS) has a periodic solution on 0 = H'1(1).
Proof: Since H satisfies (Hj), one can find a sequence of functions H, € c2(r?",R)
such that H, satisfies (H;)-(H3) and H; converges to H in the ¢! norm uniformly on
compact subsets of R°". By Theorem 1, the equation
(7.2) Zy = A JHy, ()
has a 27 periodic solution z; 1lying on D £ H;1(1) with Xm satisfying (6.2) with
constants a,, ap. Moreover
(7.3) 9, = inf_ A(z) < Alz,) < sup, Alz) = a_ .
zeM“l zeMm
*
We claim there exist constants & > a, > 0 such that
(7.4) a, €a <a <a
for all m € N and constants a' > ay > 0 such that
(7.5) ash(zg) € A < a"Alzy)
for all large m € N. Assuming (7.4)-(7.5) for the moment, it follows that the sequence
(Am) is bounded away from 0 and . Since Dm is near P for all large m, the
functions =z, are bounded in L“(S1,R?n)- Hence by (7.2), (z,) is bounded in
c’(s‘,n?"). The Arzela~Ascoli Theorem and (7.2) then imply that (Xm,zm) converges in
Rxcl(s!,R") to (A,z) satisfying
z = MHy(z) .
To complete the proof of Theorem 7.1, (7.4)-(7.5) must be verified. For the latter
inequalities, the constant a, is determined from (6.6) with H replaced by Hpyo
Since Hp * H in C1 uniformly in & neighborhood of D, an as which works for all
large m @ N can be determined. The same reasoning, together with the proofs of Theorem

6.1 and Remark 6.15 supply an a' independent of m provided that there exists a W(z)
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satisfying (6.17) with H = H; but Y and W independent of m. Since a Y exists
such that
(7.6) lug(z)| > v* for z = (0,q) €D,

the convergence of Hy, to H implies there is a k @ N such that

2
. > X
(7.7) qu(z) qu(z) 5
for z = (0,q9) € Dm and for all m,2 » k. Therefore W can be taken to be Hkq(z)'
Lastly to check (6.4), first note that by the construction of H in §1, it can be
assumed that there are constants ry,r; such that H (z) > r,lzlz -r, forall ze g0

(independently of m). Therefore z & M, = V;1(1) implies that Izl 2 < 2m(1 + rz)r;1-
L

The proof of Lemma 4.3 then shows how to obtain 0‘- To get a,, we argue indirectly.
If there were no such constant, then for each m € N, there is a cm ] M; and such that
l;ml +0 as m + », Suppose cm = (gm,nm). Then nm + 0 in W1'2(31,Rn) and a

fortiort n_ *» 0 in L"s",®") while £, 0 in r%(s", K. since
Vnlq) = Uylqg) = D-1|q|2 for small gq independently of m via the definition of ; in
§1, L)+ 0 as m+ = By (K4) of Proposition 1.3,

Kp(z) € x(1 + 1z |p|
where r 1is independent of m. Conseguently Km(cm) + 0 as m + ®, But then

1 = Ym(cm) + 0 as m * o, a contradiction. The proof is complete.
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